Calculation Policy 2022-2023

Introduction

This calculation guidance has been written in line with the programmes of study taken from the revised National Curriculum for Mathematics (2014)

It provides guidance on appropriate calculation methods and progression. The content is set out in yearly blocks under the following headings: addition, subtraction, multiplication and division. This guidance aims to develop, model and explain core understandings and mathematical principles and progression to ensure consistency in the teaching and learning of mathematics in our school.

This policy supports the White Rose maths scheme used throughout the school. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations.

- Concrete representation - a pupil is first introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and is a foundation for conceptual understanding.
- Pictorial representation - a pupil has sufficiently understood the 'hands on' experiences performed and can now relate them to representations, such as a diagram or picture of the problem.
- Abstract representation-a pupil is now capable of representing problems by using mathematical notation, for example $12 \times 2=24$. It is important that conceptual understanding, supported by the use of representation, is secure for all procedures.

Reinforcement is achieved by going back and forth between these representations.
Mathematics Mastery - At the centre of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and deepen their conceptual understanding by tackling differentiated, challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures, but demonstrate their understanding of these procedures, through the use of Concrete Pictorial Abstract CPA as appropriate, and in reasoning and problem solving activities

This policy outlines the different calculation methods which should be used as outcomes in the EYFS curriculum and the national curriculum in Y1 to Y6. To ensure consistency throughout school this policy outlines the following Whole School and Year Group expectations:

- A consistent approach to teaching and learning
- Agreed calculation strategies
- Non negotiable methods for written and mental calculations
-Precise mathematical vocabulary to be used (see additional guidelines)
- Consistent approach to setting out calculations
- Clear outcomes for every year group and key stage.

EYFS

Developing a strong grounding in number is essential so that all children develop the necessary building blocks to excel mathematically. Children should be able to count confidently, develop a deep understanding of the numbers to 10 , the relationships between them and the patterns within those numbers (Statutory Framework 2021)

Addition	Subtraction	Multiplication	Division
Children are encouraged to gain a sense of the number system through the use of counting concrete objects.	Children are encouraged to gain a sense of the number system through the use of counting concrete objects.	Children use concrete objects to make and count equal groups of objects.	Children use concrete objects to count and share equally into 2 groups
They combine objects in practical ways and count all.	They understand subtraction as counting out.	They will count on in twos using a bead string and number line.	They count a set of objects and halve them by making two equal groups.
They understand addition as counting on. They will count on in ones and twos using objects, cubes, bead string,	They begin to count back in ones and twos using objects, cubes, bead string and number line.	They understand doubling as repeated addition. $2+2=4$	They understand sharing and halving as dividing by 2.

reknerek and number line.	Subtraction Using Number Ine $4-2=2$		
They begin to use + and = They are encouraged to develop a mental picture of the number system in their heads to use for calculations. Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation	They use concrete and pictorial representation to record their calculations. They begin to use - and = Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation	They use concrete and pictorial representation to record their calculations.	They use concrete and pictorial representation to record their calculations.

ADDITION

Skill: Add 1-digit numbers within 10

Skill: Add 1 and 2-digit numbers to 20	Year: 1/2
$8+7=15$	When adding onedigit numbers that cross 10 , it is important to highlight the importance of ten ones equalling one ten. In Year 1, this is only done just by counting on. From Year 2, use different manipulatives can be used to represent this exchange alongside number lines to support children in understanding how to partition their jumps.

Skill: Add three 1-digit numbers \quad\begin{tabular}{l}

\multicolumn{1}{c|}{| Year: 2 |
| :--- |}

When adding three 1-
digit numbers,
children should be
encouraged to look
for number bonds to
10 or doubles to add
the numbers more
efficiently.

This supports

children in their

understanding of

commutativity.
\end{tabular}

Skill: Add two 2-digit numbers to 100		Year: 2/3
	$38+23=61$	Children can use a blank number line and other representations to count on to find the total. Encourage them to jump to multiples of 10 to become more efficient. From Year 3, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters. As numbers become larger, straws become less efficient.

Skill: Add numbers with up to 4 digits								Year: 4
				1,378 \square Oe $148=$ Thousands		$\begin{array}{r} 13 \\ +212 \\ \hline 352 \\ \hline 11 \end{array}$	$\begin{array}{ll} 7 & 8 \\ 4 & 8 \\ \hline 26 \\ \hline 1 \end{array}$	Base 10 and place value counters are the most effective manipulatives when adding numbers with up to 4 digits. Ensure children write out their calculation alongside any concrete resources so they can see the links to the written column method. Plain counters on a place value grid can also be used to support learning.

SUBTRACTION

Skill: Subtract 1-digit numbers within 10 年

Skill: Subtract 1 and 2-digit numbers to 20	Year: 1/2
	In Year 1, subtracting one-digit numbers that cross 10 , is done by counting back, using objects, number tracks and number lines. From Year 2, children should be encouraged to find the number bond to 10 when partitioning the subtracted number. Ten frames, number shapes and number lines are particularly useful for this.

Skill: Subtract 1 and 2-digit numbers to 100	Year: 2/3
	Children can also use a blank number line to count back to find the difference. Encourage them to jump to multiples of 10 to become more efficient. From Year 3, encourage children to use the formal column method when calculating alongside straws, base 10 or place value counters. As numbers become larger, straws become less efficient.

Multiplication

Our calculation policy for multiplication starts with a breakdown of times tables; what should be taught, when it should be taught and what that teaching should look like.

During the Summer Term, the children in Year 4 sit the Multiplication Tables Check in line with the Government's assessment framework.

Skill: 2 times table	Year: 2
	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones. Use different models to develop fluency.

Skill: 5 times table								Year: 2
								Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the five times table, using concrete manipulatives to support. Notice the pattern in the ones as well as highlighting the odd, even, odd, even pattern.

Skill: 8 times table															Year: 3
00000000000000					1	2	3	4	5	6	7	8	9	10	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the eight times table, using manipulatives to support. Make links to the 4 times table, seeing how each multiple is double the fours. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
					11	12	13	14	15	16	17	18	19	20	
					21	22	23	(24)	25	26	27	28	29	30	
					31	(32)	33	34	35	36	37	38	39	(4)	
					41	42	43	44	45	46	47	(48)	49	50	
					51	52	53	54	55	5	57	58	59	60	
					61	62	63	(64)	65	66	67	68	69	70	
					71	(2)	73	74	75	76	77	78	79	88	
16 24 32					81	82	83	84	85	86	87	88	89	90	
					91	92	93	94	95	96	97	98	99	100	
48	56	64	72	80											

Skill: 6 times table															Year: 4
								4		6	7	8	9	10	Encourage daily counting in multiples, supported by a number line or a hundred square. Look for patterns in the six times table, using manipulatives to support. Make links to the 3 times table, seeing how each multiple is double the threes. Notice the pattern in the ones within each group of five multiples. Highlight that all the multiples are even using number shapes to support.
					11	(12)	13	14	15	16	17	(18)	19	20	
					21	22	23	(24)	25	26	27	28	29	(3)	
					31	32	33	34	35	(3)	37	38	39	40	
						(42)	43	44	45	46	47	(48)	49	50	
					51	52	53	(54)	55	56	57	58	59	6	
6	12	18	24	30	61	62	63	64	65	66	67	68	69	70	
36	42	48	54	60			73	74	75	76	77	78	79	30	
66	72	78	84	90				84	85	86	87	88	89	90	
-00000 -00000-000000-															

Skill: 9 times table															Year: 4
000009000000					1	2	3	4	5	6	7	8	(9)	10	Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square. Look for patterns in the nine times table, using concrete manipulatives to support. Notice the pattern in the tens and ones using the hundred square to support as well as noting the odd, even pattern within the multiples.
					11	12	13	14	15	16	17	(18)	19	20	
					21	22	23	24	25	26	(27)	28	29	30	
					31	32	33	34	35	(36)	37	38	39	40	
					41	42	43	44	(45)	46	47	48	49	50	
9	18	27	36	45	51	52	53	(44)	55	56	57	58	59	60	
54	63	72	81	90	61	62	(3)	64	65	66	67	68	69	70	
81 82 83 84 85 86 87 88 89 96 91 92 93 94 95 96 97 98 99 -000000000-000000000-000000000-															

Skill: 7 times table														Year: 4
00000000					1	2	3	4	5	6	(7) 8	9	10	Encourage daily counting in multiples both forwards and backwards, supported by a number line or a hundred square. The seven times table can be trickier to learn due to the lack of obvious pattern in the numbers, however they already know several facts due to commutativity. Children can still see the odd, even pattern in the multiples using number shapes to support.
					11	12	13	(14)	15	16	1718	19	20	
					(2)	22	23	24	25	26	27 (28)	29	30	
					31	32	33	34	(3)	36	3738	39	40	
					41	(42)	43	44	45	46	4748	(49)	50	
7	14	21	28	35	51	52	53	54	55	(5)	57.58	59	60	
42	49	56	63	70	61	62	(63)	64	65	66	6768	69	(7)	
81 82 83 84 85 86 87 88 89 90 90 (94) 92 93 94 95 96 97 98 99 -0000000-0000000-0000000-														

Skill: Solve 1-step problems using multiplication \quad| Year: $1 / 2$ |
| :--- |

Skill: Multiply 4-dig				1-digi	Year: 5
		© © - H 8 4	$\begin{aligned} & \\ & \hline \text { T } \\ & \hline 2 \\ & \hline \end{aligned}$		When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method. If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.

Skill: Multiply 4-digit numbers by 2-digit numbers					Year: 5/6
					When multiplying 4digits by 2-digits, children should be confident in the written method. If they are still struggling with times tables, provide multiplication grids to support when they are focusing on the use of the method. Consider where exchanged digits are placed and make sure this is consistent.
	Th	H	T	O	
	2	7	3	9	
			2	8	
	5^{1}	3^{9}	7^{1}	2	
	4	1^{7}	8	0	
	6	6	9	2	
		1			
$2,739 \times 28=76,6$	2,739 $\times 28-76,692$				

Division

\begin{tabular}{|c|c|}
\hline Skill: Solve 1-step problems using multiplication (sharing) \& Year: 1/2

\hline \begin{tabular}{l}
There are 20 apples altogether. They are shared equally between 5 bags. How many apples are in each bag?

00000

\square

$$
20 \div 5=4
$$

 \&

Children solve problems by sharing amounts into equal groups.

In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record division formally.

In Year 2, children are introduced to the division symbol.
\end{tabular}

\hline
\end{tabular}

Skill: Solve 1-step problems using division (grouping) \quad| Year: $1 / 2$ |
| :--- |

| Skill: Divide 2-digits by 1-digit (sharing with no exchange) | Year: $1 / 2$ |
| :--- | :--- | :--- |
| Tens | When dividing larger
 numbers, children can
 use manipulatives
 that allow them to
 partition into tens and
 ones. |
| Straws, Base 10 and | |
| place value counters | |
| can all be used to | |
| share numbers into | |
| equal groups. | |

